3.15.48 \(\int \frac {(a+b x)^5}{(a c+b c x)^{5/2}} \, dx\) [1448]

Optimal. Leaf size=22 \[ \frac {2 (a c+b c x)^{7/2}}{7 b c^6} \]

[Out]

2/7*(b*c*x+a*c)^(7/2)/b/c^6

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {21, 32} \begin {gather*} \frac {2 (a c+b c x)^{7/2}}{7 b c^6} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^5/(a*c + b*c*x)^(5/2),x]

[Out]

(2*(a*c + b*c*x)^(7/2))/(7*b*c^6)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin {align*} \int \frac {(a+b x)^5}{(a c+b c x)^{5/2}} \, dx &=\frac {\int (a c+b c x)^{5/2} \, dx}{c^5}\\ &=\frac {2 (a c+b c x)^{7/2}}{7 b c^6}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 25, normalized size = 1.14 \begin {gather*} \frac {2 (a+b x)^6}{7 b (c (a+b x))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^5/(a*c + b*c*x)^(5/2),x]

[Out]

(2*(a + b*x)^6)/(7*b*(c*(a + b*x))^(5/2))

________________________________________________________________________________________

Mathics [C] Result contains higher order function than in optimal. Order 9 vs. order 2 in optimal.
time = 2.65, size = 119, normalized size = 5.41 \begin {gather*} \text {Piecewise}\left [\left \{\left \{0,\text {Abs}\left [\frac {a}{b}+x\right ]<1\text {\&\&}\text {Abs}\left [\frac {b}{a+b x}\right ]<1\right \},\left \{\frac {2 b^{\frac {5}{2}} \left (\frac {a}{b}+x\right )^{\frac {7}{2}}}{7 c^{\frac {5}{2}}},\text {Abs}\left [\frac {a}{b}+x\right ]<1\text {$\vert $$\vert $}\text {Abs}\left [\frac {b}{a+b x}\right ]<1\right \}\right \},\frac {b^{\frac {5}{2}} \text {meijerg}\left [\left \{\left \{1\right \},\left \{\frac {9}{2}\right \}\right \},\left \{\left \{\frac {7}{2}\right \},\left \{0\right \}\right \},\frac {a}{b}+x\right ]}{c^{\frac {5}{2}}}+\frac {b^{\frac {5}{2}} \text {meijerg}\left [\left \{\left \{\frac {9}{2},1\right \},\left \{\right \}\right \},\left \{\left \{\right \},\left \{\frac {7}{2},0\right \}\right \},\frac {a}{b}+x\right ]}{c^{\frac {5}{2}}}\right ] \end {gather*}

Warning: Unable to verify antiderivative.

[In]

mathics('Integrate[(a + b*x)^5/(a*c + b*c*x)^(5/2),x]')

[Out]

Piecewise[{{0, Abs[a / b + x] < 1 && Abs[b / (a + b x)] < 1}, {2 b ^ (5 / 2) (a / b + x) ^ (7 / 2) / (7 c ^ (5
 / 2)), Abs[a / b + x] < 1 || Abs[b / (a + b x)] < 1}}, b ^ (5 / 2) meijerg[{{1}, {9 / 2}}, {{7 / 2}, {0}}, a
/ b + x] / c ^ (5 / 2) + b ^ (5 / 2) meijerg[{{9 / 2, 1}, {}}, {{}, {7 / 2, 0}}, a / b + x] / c ^ (5 / 2)]

________________________________________________________________________________________

Maple [A]
time = 0.15, size = 19, normalized size = 0.86

method result size
derivativedivides \(\frac {2 \left (b c x +a c \right )^{\frac {7}{2}}}{7 b \,c^{6}}\) \(19\)
default \(\frac {2 \left (b c x +a c \right )^{\frac {7}{2}}}{7 b \,c^{6}}\) \(19\)
gosper \(\frac {2 \left (b x +a \right )^{6}}{7 b \left (b c x +a c \right )^{\frac {5}{2}}}\) \(23\)
trager \(\frac {2 \left (b^{3} x^{3}+3 a \,b^{2} x^{2}+3 a^{2} b x +a^{3}\right ) \sqrt {b c x +a c}}{7 c^{3} b}\) \(46\)
risch \(\frac {2 \left (b^{3} x^{3}+3 a \,b^{2} x^{2}+3 a^{2} b x +a^{3}\right ) \left (b x +a \right )}{7 c^{2} b \sqrt {c \left (b x +a \right )}}\) \(50\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^5/(b*c*x+a*c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/7*(b*c*x+a*c)^(7/2)/b/c^6

________________________________________________________________________________________

Maxima [A]
time = 0.26, size = 18, normalized size = 0.82 \begin {gather*} \frac {2 \, {\left (b c x + a c\right )}^{\frac {7}{2}}}{7 \, b c^{6}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^5/(b*c*x+a*c)^(5/2),x, algorithm="maxima")

[Out]

2/7*(b*c*x + a*c)^(7/2)/(b*c^6)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 45 vs. \(2 (18) = 36\).
time = 0.29, size = 45, normalized size = 2.05 \begin {gather*} \frac {2 \, {\left (b^{3} x^{3} + 3 \, a b^{2} x^{2} + 3 \, a^{2} b x + a^{3}\right )} \sqrt {b c x + a c}}{7 \, b c^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^5/(b*c*x+a*c)^(5/2),x, algorithm="fricas")

[Out]

2/7*(b^3*x^3 + 3*a*b^2*x^2 + 3*a^2*b*x + a^3)*sqrt(b*c*x + a*c)/(b*c^3)

________________________________________________________________________________________

Sympy [A]
time = 0.69, size = 88, normalized size = 4.00 \begin {gather*} \begin {cases} 0 & \text {for}\: \frac {1}{\left |{\frac {a}{b} + x}\right |} < 1 \wedge \left |{\frac {a}{b} + x}\right | < 1 \\\frac {2 b^{\frac {5}{2}} \left (\frac {a}{b} + x\right )^{\frac {7}{2}}}{7 c^{\frac {5}{2}}} & \text {for}\: \frac {1}{\left |{\frac {a}{b} + x}\right |} < 1 \vee \left |{\frac {a}{b} + x}\right | < 1 \\\frac {b^{\frac {5}{2}} {G_{2, 2}^{1, 1}\left (\begin {matrix} 1 & \frac {9}{2} \\\frac {7}{2} & 0 \end {matrix} \middle | {\frac {a}{b} + x} \right )}}{c^{\frac {5}{2}}} + \frac {b^{\frac {5}{2}} {G_{2, 2}^{0, 2}\left (\begin {matrix} \frac {9}{2}, 1 & \\ & \frac {7}{2}, 0 \end {matrix} \middle | {\frac {a}{b} + x} \right )}}{c^{\frac {5}{2}}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**5/(b*c*x+a*c)**(5/2),x)

[Out]

Piecewise((0, (Abs(a/b + x) < 1) & (1/Abs(a/b + x) < 1)), (2*b**(5/2)*(a/b + x)**(7/2)/(7*c**(5/2)), (Abs(a/b
+ x) < 1) | (1/Abs(a/b + x) < 1)), (b**(5/2)*meijerg(((1,), (9/2,)), ((7/2,), (0,)), a/b + x)/c**(5/2) + b**(5
/2)*meijerg(((9/2, 1), ()), ((), (7/2, 0)), a/b + x)/c**(5/2), True))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 178 vs. \(2 (18) = 36\).
time = 0.00, size = 273, normalized size = 12.41 \begin {gather*} \frac {\frac {2 b^{3} \left (\frac {1}{7} \sqrt {a c+b c x} \left (a c+b c x\right )^{3}-\frac {3}{5} \sqrt {a c+b c x} \left (a c+b c x\right )^{2} a c+\sqrt {a c+b c x} \left (a c+b c x\right ) a^{2} c^{2}-\sqrt {a c+b c x} a^{3} c^{3}\right )}{c^{3} b^{3}}+\frac {6 a b^{2} \left (\frac {1}{5} \sqrt {a c+b c x} \left (a c+b c x\right )^{2}-\frac {2}{3} \sqrt {a c+b c x} \left (a c+b c x\right ) a c+\sqrt {a c+b c x} a^{2} c^{2}\right )}{c^{2} b^{2}}+2 a^{3} \sqrt {a c+b c x}+\frac {6 a^{2} \left (\frac {1}{3} \sqrt {a c+b c x} \left (a c+b c x\right )-a c \sqrt {a c+b c x}\right )}{c}}{c^{3} b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^5/(b*c*x+a*c)^(5/2),x)

[Out]

2/35*(35*sqrt(b*c*x + a*c)*a^3 - 35*(3*sqrt(b*c*x + a*c)*a*c - (b*c*x + a*c)^(3/2))*a^2/c + 7*(15*sqrt(b*c*x +
 a*c)*a^2*c^2 - 10*(b*c*x + a*c)^(3/2)*a*c + 3*(b*c*x + a*c)^(5/2))*a/c^2 - (35*sqrt(b*c*x + a*c)*a^3*c^3 - 35
*(b*c*x + a*c)^(3/2)*a^2*c^2 + 21*(b*c*x + a*c)^(5/2)*a*c - 5*(b*c*x + a*c)^(7/2))/c^3)/(b*c^3)

________________________________________________________________________________________

Mupad [B]
time = 0.03, size = 17, normalized size = 0.77 \begin {gather*} \frac {2\,{\left (c\,\left (a+b\,x\right )\right )}^{7/2}}{7\,b\,c^6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x)^5/(a*c + b*c*x)^(5/2),x)

[Out]

(2*(c*(a + b*x))^(7/2))/(7*b*c^6)

________________________________________________________________________________________